This book is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices.

When the first edition of Basic Semiconductor Physics was published in 2001, there were already many books, review papers and scientific journals dealing with various aspects of semiconductor physics. Since many of them were dealing with special aspects of newly observed phenomena or with very fundamental physics, it was difficult to understand the advanced physics of semiconductors without the detailed knowledge of semiconductor physics. For this purpose, the author published the first edition for the readers who are involved with semiconductor research and development. Basic Semiconductor Physics deals with details of energy band structures, effective mass equation, and kp perturbation, and then describes very important phenomena in semiconductors such as optical, transport, magnetoresistance, and quantum phenomena. Some of my friends wrote to me that the textbook is not only basic but advanced, and that the title of the book does not reflect its contents. However, I am still convinced that the title is appropriate, because the advanced physics of semiconductor may be understood with the knowledge of the fundamental physics. In addition, new and advanced phenomena served in semiconductors at an early time are becoming well-known and thus classified in basic physics. After the publication of the first edition, many typographical errors have been pointed out and the corrected version was published in 2006. The publisher and my friends persuaded me to revise the book adding new chapters, keeping the subject at the appropriate level.

This book is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices.

The awaited revision of Semiconductor Devices: Physics and Technology offers more than 50% new or revised material that reflects a multitude of important discoveries and advances in device physics and integrated circuit processing. Offering a basic introduction to physical principles of modern semiconductor devices and their advanced fabrication technology, the third edition presents students with theoretical and practical aspects of every step in device characterizations and fabrication, with an emphasis on integrated circuits. Divided into three parts, this text covers the basic properties of semiconductor materials, emphasizing silicon and gallium arsenide; the physics and characteristics of semiconductor devices bipolar, unipolar, special microwave and photonic devices; and the latest processing technologies, from crystal growth to lithographic pattern transfer.

Targeting one of the fastest growing areas of consumer electronics, Semiconductor Optoelectronics covers both optoelectronics devices and applications, focusing on the physics and technology of the hardware that is critical to the optoelectronic technology. The text establishes a close link of lasers, detectors, modulators and switches to the global system demands, and solved examples, design related problems and physical insights, along with mathematics, are used throughout.
reference needs, this new edition includes: A complete update of the latest developments New devices such as: three-dimensional MOSFETs, MODFETs, resonant-tunneling diodes, semiconductor sensors, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and more. Materials completely reorganized Problem sets at the end of each chapter. All figures reproduced at the highest quality. Physics of Semiconductor Devices, Third Edition offers engineers, research scientists, faculty, and students a practical basis for understanding the most important devices in use today, and for evaluating future device performance and limitations. A Solutions Manual is available from the editorial department.

A self-contained and up-to-date account of the current developments in the physics and technology of nanowire semiconductor devices.

"This well organized reference book covers the newest and most important practically applicable results in thin film-based semiconductor (A2B6-A4B6 and chalcogenide) sensors, heterojunction-based active elements and other devices. This book is written for"

The new edition of the most detailed and comprehensive single-volume reference on major semiconductor devices The Fourth Edition of Physics of Semiconductor Devices remains the standard reference work on the fundamental physics and operational characteristics of all major bipolar, unipolar, special microwave, and optoelectronic devices. This fully updated and expanded edition includes approximately 1,000 references to original research papers and review articles, more than 650 high-quality technical illustrations, and over two dozen tables of material parameters. Divided into five parts, the text first provides a summary of semiconductor properties, covering energy band, carrier concentration, and transport properties. The second part surveys the basic building blocks of semiconductor devices, including p-n junctions, metal-semiconductor contacts, and metal-insulator-semiconductor (MIS) capacitors. Part III examines bipolar transistors, MOSFETs (MOS field-effect transistors), and other field-effect transistors such as JFETs (junction field-effect-transistors) and MESFETs (metal-semiconductor field-effect transistors). Part IV focuses on negative resistance and power devices. The book concludes with coverage of photonic devices and sensors, including light-emitting diodes (LEDs), solar cells, and various photodetectors and semiconductor sensors. This classic volume, the standard textbook and reference in the field of semiconductor devices. Provides the practical foundation necessary for understanding the devices currently in use and evaluating the performance and limitations of future devices. Offers completely updated and revised information that reflects advances in device concepts, performance, and application. Features discussions of topics of contemporary interest, such as applications of photonic devices that convert optical energy to electric energy. Includes numerous problem sets, real-world examples, tables, figures, and illustrations; several useful appendices; and a detailed solutions manual. Explores new work on leading-edge technologies such as MODFETs, resonant-tunneling diodes, quantum-cascade lasers, single-electron transistors, real-space transfer devices, and MOS-controlled thyristors. Physics of Semiconductor Devices, Fourth Edition is an indispensable resource for design engineers, research scientists, industrial and electronics engineering managers, and graduate students in the field.

This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices. Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of some basic fabrication steps, and to measuring methods for the semiconductor device parameters.

Introduction to Semiconductor Device Physics is a popular and established text that offers a thorough introduction to the underlying physics of semiconductor devices. It begins with a review of basic solid-state physics, then goes on to describe the properties of semiconductors including energy bands, the concept of effective mass, carrier concentration, and conduction in more detail. In some cases, the book is concerned with the principles of operation of specific devices, beginning with the Gunn Diode and the p-n junction. The remaining chapters cover the on specific devices, including the LED, the bipolar transistor, the field-effect transistor, and the semiconductor laser. The book concludes with a chapter providing a brief introduction to quantum theory. Not overly mathematical, Introduction to Semiconductor Device Physics introduces only those physical concepts required for an understanding of the semiconductor devices being considered. The author's intuitive style, coupled with an extensive set of worked problems, makes this the ideal introductory text for those concerned with understanding electrical and electronic engineering, applied physics, and related subjects.

This text is a first attempt to pull together the whole of semiconductor science and technology since 1970 in so far as semiconductor multilayers are concerned. Material, technology, physics and device issues are described with approximately equal emphasis, and form a single coherent point of view. The subject matter is the concern of over half of today's active semiconductor scientists and technologists, the remainder working on bulk semiconductors and devices. It is now routine to design in the prep semiconductor multilayers at a time, with independent control over the dropping and composition in each layer. In turn these multilayers can be patterned with features that as small as a few atomic layers in lateral extent. The resulting structures open up many new areas of exciting solid state and quantum physics. They have also led to whole new generations of electronic and optoelectronic devices whose superior performance relates back to the multilayer structures. The principles established in the field have several decades to go, advancing towards the ultimate of materials engineering, the design and preparation of solids atom by atom. The book should appeal equally to physicists, electronic engineers and materials scientists.

Germanium is a semiconductor material that formed the basis for the development of transistor technology. Although the breakthrough of planar technology and integrated circuits put silicon in the foreground, in recent years there has been a renewed interest in germanium, which has been triggered by its strong potential for deep submicron (sub 45 nm) technologies. Germanium Based technologies: From Materials to Devices is the first book to provide a broad, in-depth coverage of the field, including recent advances in Ge technology and the fundamentals in material science, device physics and semiconductor processing. The contributing authors are international experts with a world-wide recognition and involved in the leading research in the field. The book also covers applications and the use of Ge for optoelectronics, detectors and solar cells. An ideal reference work for students and scientists working in the field of physics of semiconductor devices and materials, as well as for engineers in
Microfabrication is the key technology behind integrated circuits, microsensors, photonic crystals, ink jet printers, solar cells and flat panel displays. Microsystems can be complex, but the basic microstructures and processes of microfabrication are fairly simple. Introduction to Microfabrication shows how the common microfabrication concepts can be applied over and over again to create devices with a wide variety of structures and functions. Featuring: * A comprehensive presentation of basic fabrication processes * An emphasis on materials and microstructures, rather than device physics * An in-depth discussion on process integration showing how processes, materials and devices interact * A wealth of examples of both conceptual and real devices Introduction to Microfabrication includes 250 homework problems for students to familiarise themselves with micro-scale materials, dimensions, measurements, costs and scaling trends. Both research and manufacturing topics are covered, with an emphasis on silicon, which is the workhorse of microfabrication. This book will serve as an excellent first text for electrical engineers, chemists, physicists and materials scientists who wish to learn about microstructures and microfabrication techniques, whether in MEMS, microelectronics or emerging applications.

The advent of the microelectronics technology has made ever-increasing numbers of small devices on a single chip. The rapid emergence of ultra-large scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i.e., one-dimensional treatment, low-level injection, quasi-static approximation, etc.) employed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modern semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.

Addresses a Growing Need for High-Power and High-Frequency Transistors Gallium Nitride (GaN): Physics, Devices, and Technology offers a balanced perspective on the state of the art in gallium nitride technology. A semiconductor commonly used in bright light-emitting diodes, GaN can serve as a great alternative to existing devices used in microelectronics. It has a wide band gap and high electron mobility that gives it special properties for applications in optoelectronic, high-power, and high-frequency devices, and because of its high off-state breakdown strength combined with excellent on-state channel conductivity, GaN is an ideal candidate for switching power transistors. Explores Recent Progress in High-Frequency GaN Technology Written by a panel of academic and industry experts from around the globe, this book reviews the advantages of GaN-based material systems suitable for high-frequency, high-power applications. It provides an overview of the semiconductor environment, outlines the fundamental device physics of GaN, and describes GaN materials and device structures that are needed for the next stage of microelectronics and optoelectronics. The book details the development of radio frequency (RF) semiconductor devices and circuits, considers the current challenges that the industry now faces, and examines future trends. In addition, the authors present a design in which multiple LED stacks can be connected in a series using interband tunnel junction (TJ) interconnects. Examine GaN technology while in its early stages of high-volume deployment in commercial and military products. Consider the potential role of both sunlight and hydrogen as promising and prominent energy sources for this technology. Introduce two unique methods, PEC oxidation and vapor cooling condensation methods, for the deposition of high-quality oxide layers. A single-source reference for students and professionals, Gallium Nitride (GaN): Physics, Devices, and Technology provides an overall assessment of the semiconductor environment, discusses the potential use of GaN-based technology for RF semiconductor devices, and highlights the current and emerging applications of GaN.

The demand for liquid crystals with better display parameters and lower power consumption has stimulated much research into their properties and characterization. A large team of over 50 leading researchers from the USA, Europe and Japan have focused their expertise to extract and review data on a wide range of properties of nematics, including those which are essential to the development of all types of liquid crystal device. Where appropriate these properties are also explained with expert commentary. The book is fully illustrated and structured for reference.

This book is a comprehensive text on the physics of semiconductors and nanostructures for a large spectrum of students at the final undergraduate level studying physics, material science and electronics engineering. It offers introductory and advanced courses on solid state and semiconductor physics on one hand and the physics of low dimensional semiconductor structures on the other in a single text book. Key Features Presents basic concepts of quantum theory, solid state physics, semiconductors, and quantum nanostructures such as quantum well, quantum wire, quantum dot and superlattice. In-depth description of semiconductor heterojunctions, lattice strain and modulation doping technique. Covers transport in nanostructures under an electric and magnetic field with the topics quantized conductance, Coulomb blockade, and integer and fractional quantum Hall effect. Presents the optical processes in nanostructures under a magnetic field. Includes illustrative problems with hints for solutions in each chapter. Physics of Semiconductors and Nanostructures will be helpful to students initiating PhD work in the field of semiconductor nanostructures and devices. It follows a unique tutorial approach meeting the requirements of students who find learning the concepts difficult and want to study from a physical perspective.
Frequency/ Power Devices: Nanotechnology and Emerging Areas: Organic Electronics: Displays and Lighting

Many eminent scientists from various national and international organizations are actively participating with their latest research works and also equally supporting this mega event by joining the various organizing committees.

This volume is the first in a series of three books addressing Electrostatic Discharge (ESD) physics, devices, circuits and design across the full range of integrated circuit technologies. ESD Physics and Devices provides a concise treatment of the ESD phenomenon and the physics of devices operating under ESD conditions. Voldman presents an accessible introduction to the field for engineers and researchers requiring a solid grounding in this important area. The book contains advanced CMOS, Silicon On Insulator, Silicon Germanium, and Silicon Germanium Carbon. In addition it also addresses ESD in advanced CMOS with discussions on shallow trench isolation (STI), Copper and Low K materials. Provides a clear understanding of ESD device physics and the fundamentals of ESD phenomena. Analyses the behaviour of semiconductor devices under ESD conditions. Addresses the growing awareness of the problems resulting from ESD phenomena in advanced integrated circuits.

Covers ESD testing, failure criteria and scaling theory for CMOS, SOI (silicon on insulator), BICMOS and BICMOS SiGe (Silicon Germanium) technologies for the first time. Discusses the design and development implications of ESD in semiconductor technologies. An invaluable reference for EMC non-specialist engineers and researchers working in the fields of IC and transistor design. Also, suitable for researchers and advanced students in the fields of device circuit modelling and semiconductor reliability.

Electrical Engineering: Advanced Theory of Semiconductor Devices

Semiconductor devices are ubiquitous in today’s world and are found increasingly in cars, kitchens and electronic door locks, attesting to their presence in our daily lives. This comprehensive book provides the fundamentals of semiconductor device theory from basic quantum physics to computer-aided design. Advanced Theory of Semiconductor Devices will improve your understanding of basic computer simulation of devices through a thorough discussion of basic equations, their validity, and numerical solutions as they are contained in current simulation tools. You will gain state-of-the-art knowledge of devices used in both III–V compounds and silicon technology. Specially featured are novel approaches and explanations of electronic transport, particularly in p–n junction diodes. Close attention is also given to innovative treatments of quantum-well laser diodes and hot electron effects in silicon technology. This in-depth book is written for engineers, graduate students, and research scientists in solid-state electronics who want to gain a better understanding of the principles underlying semiconductor devices.

Nonequilibrium hot charge carriers play a crucial role in the physics and technology of semiconductor nanostructure devices. This book, one of the first on the topic, discusses fundamental aspects of hot carriers in quasi-two-dimensional systems and the impact of these carriers on semiconductor devices. The work will provide scientists and device engineers with an authoritative review of the most exciting recent developments in this rapidly moving field. It should be read by all those who wish to learn the fundamentals of contemporary ultra-small, ultra-fast semiconductor devices. Topics covered include Reduced dimensionality and quantum wells Carrier-phonon interactions and hot phonons Femtosecond optical studies of hot carrier Ballistic transport Submicron and resonant tunneling devices

Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiations. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage.

Semiconductors are at the heart of modern living. Almost everything we do, be it work, travel, communication, or entertainment, all depend on some feature of semiconductor technology. Comprehensive Semiconductor Science and Technology captures the breadth of this important field, and presents it in a single source to the large audience who study, make, and exploit semiconductors. Previous attempts at this achievement have been abbreviated, and have omitted important topics. Written and Edited by a truly international team of experts, this work delivers an objective yet cohesive global review of the semiconductor world. The work is divided into three sections. The first section is concerned with the fundamental physics of semiconductors, showing how the electronic features and the lattice dynamics change drastically when systems vary from bulk to a low-dimensional structure and further to a nanometer size. Throughout this section there is an emphasis on the full understanding of the underlying physics. The second section deals largely with the transformation of the conceptual framework of solid state physics into devices and systems which require the growth of extremely high purity, nearly defect-free bulk and epitaxial materials. The last section is devoted to exploitation of the knowledge described in the previous sections to highlight the spectrum of devices we see all around us. Provides a comprehensive global picture of the semiconductor world. Each of the work’s three sections presents a complete description of one aspect of the whole. Written and Edited by a truly international team of experts.

Aimed primarily at the undergraduate students pursuing courses in semiconductor physics and semiconductor devices, this text emphasizes the physical understanding of the underlying principles of the subject. Since engineers use semiconductor devices as circuit elements, device models commonly used in the circuit simulators, e.g. SPICE, have been discussed in detail. Advanced topics such as lasers, heterojunction bipolar transistors, second order effects in BJTs, and MOSFETs are also covered. With such in-depth coverage and a practical approach, practising engineers and PG students can also use this book as a ready reference.

The performance of high-speed semiconductor devices—the genius driving digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics—is inextricably linked to the unique physical and electrical properties of gallium arsenide. Once viewed as a novel alternative to silicon, gallium arsenide has swiftly moved into the forefront of the leading high-tech industries as an irreplaceable material in component fabrication. GaAs High-Speed Devices provides a comprehensive, state-of-the-science look at the phenomenally expansive range of engineering devices gallium arsenide has made possible—as well as the fabrication methods, operating principles, device models, novel device designs, and the material properties and physics of GaAs that are so keenly integral to their success. In a clear five-part format, the book systematically examines each of these aspects of GaAs device technology, forming the first authoritative study to consider so many important aspects at once and in such detail. Beginning with chapter 2 of part one, the book discusses such basic subjects as gallium arsenide materials and crystal properties, electron energy band structures, hole and electron transport, crystal growth of GaAs from the
melt and defect density analysis. Part two describes the fabrication process of gallium arsenide devices and integrated circuits, shedding light, in chapter 3, on epitaxial growth processes, molecular beam epitaxy, and metal organic chemical vapor deposition techniques. Chapter 4 provides an introduction to wafer cleaning techniques and environment control, wet etching methods and chemicals, and dry etching systems, including reactive ion etching, focused ion beam, and laser assisted methods. Chapter 5 provides a clear overview of photolithography and nonoptical lithography techniques that include electron beam, x-ray, and ion beam lithography systems. The advances in fabrication techniques described in previous chapters necessitate an examination of low-dimension device physics, which is carried on in detail in chapter 6 of part three. Part four includes a discussion of innovative device design and operating principles which deepens and elaborates the ideas introduced in chapter 1. Key areas such as metal-semiconductor contact systems, Schottky Barrier and ohmic contact formation and reliability studies are examined in chapter 7. A detailed discussion of metal semiconductor field-effect transistors, the fabrication technology, and models and parameter extraction for device analyses occurs in chapter 8. The fifth part of the book progresses to an up-to-date discussion of heterostructure field-effect (HETM in chapter 9), potential-effect (HBT in chapter 10), and quantum-effect devices (chapters 11 and 12), all of which are certain to have a major impact on high-speed integrated circuits and optoelectronic integrated circuit (OEIC) applications. Every facet of GaAs device technology is placed firmly in a historical context, allowing readers to see instantaneously the significant developmental changes that have shaped it. Featuring a look at devices still under development and device structures not yet found in the literature, GaAs High-Speed Devices also provides a valuable glimpse into the newest innovations at the center of the latest GaAs technology. An essential text for electronic engineers, materials scientists, physicists, and students, GaAs High-Speed Devices offers the first comprehensive and up-to-date look at these formidable 21st century tools. The unique physical and electrical properties of gallium arsenide have revolutionized the hardware essential to digital computers, advanced electronic systems for digital signal processing, telecommunication systems, and optoelectronics. GaAs High-Speed Devices provides the first fully comprehensive look at the enormous range of engineering devices gallium arsenide has made possible as well as the backbone of the technology—fabrication methods, operating principles, and the materials properties and physics of GaAs—device models and novel device designs. Featuring a clear, six-part format, the book cover GaAs materials and crystal properties, Fabrication processes of GaAs devices and integrated circuits, Electron beam, x-ray, and ion beam lithography systems, Metal-semiconductor contact systems, Heterostructure Field-effect, potential-effect, and quantum-effect devices. GaAs Microwave Monolithic Integrated Circuits and Digital Integrated Circuits. In addition, this comprehensive volume places every facet of the technology in an historical context and gives readers an unusual glimpse at devices still under development and device structures not yet found in the literature.

Semiconductor Device Physics and Design teaches readers how to approach device design from the point of view of someone who wants to improve devices and can see the opportunity and challenges. It begins with coverage of basic physics concepts, including the physics behind polar heterostructures and strained heterostructures. The book then details the important devices ranging from p-n diodes to bipolar and field effect devices. By relating device design to device performance and then relating device needs to systems the student can see how device design works in the real world.

The 3rd edition of this successful textbook contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors, nanowires, quantum dots, multi-junction solar cells, thin film transistors, carbon-based nanostructures and transparent conductive oxides. The text derives explicit formulas for many results to support better understanding of the topics. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from a highly regarded two-semester course. In the third edition several topics are extended and treated in more depth including surfaces, disordered materials, amorphous semiconductors, polarons, thermopower and noise. More than 1800 references guide the reader to historic and current literature including original and review papers and books.

"This book is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices."—Publisher's description.

Physics of Semiconductor Devices covers both classic basic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices is a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.

This book provides an overview of compound semiconductor materials and their technology. After presenting a theoretical background, it describes the relevant material preparation technologies for bulk and thin-layer epitaxial growth. It then briefly discusses the electrical, optical, and structural properties of semiconductors, complemented by a description of the most popular characterization tools, before more complex hetero- and low-dimensional structures are discussed. A special chapter is devoted to GaN and related materials, owing to their huge importance in modern optoelectronic and electronic devices, on the one hand, and their particular properties compared to other compound semiconductors, on the other. In the last part of the book, the physics and functionality of optoelectronic and electronic device structures (LEDs, laser diodes, solar cells, field-effect and heterojunction bipolar transistors) are discussed on the basis of the specific properties of compound semiconductors presented in the preceding chapters of the book. Compound semiconductors form the backbone of all opto-electronic and electronic devices besides the classical Si electronics. Currently the most important field is solid state lighting with highly efficient LEDs emitting visible light. Also laser diodes of all wavelength ranges between mid-infrared and near ultraviolet have been the enabler for a huge number of unprecedented applications like CDs and DVDs for entertainment and data storage, not to speak about the internet, which would be impossible
without optical data communications with infrared laser diodes as key elements. This book provides a concise overview over this class of materials, including the most important technological aspects for their fabrication and characterisation, also covering the most relevant devices based on compound semiconductors. It presents therefore an excellent introduction into this subject not only for students, but also for engineers and scientists: who intend to put their focus on this field of science.

This book disseminates the current knowledge of semiconductor physics and its applications across the scientific community. It is based on a biennial workshop that provides the participating research groups with a stimulating platform for interaction and collaboration with colleagues from the same scientific community. The book discusses the latest developments in the field of III-nitrides: materials & devices, compound semiconductors, VLSI technology, optoelectronics, sensors, photovoltaics, crystal growth, epitaxy and characterization, graphene and other 2D materials and organic semiconductors.

A comprehensive guide to current techniques, applications, and trends in InP-based technologies. Introducing one of the hottest technologies in the semiconductor industry, this collection of articles by international leading experts covers the state of the art of indium phosphide (InP)-based materials and devices. From current industry practices to cutting-edge developments to promising research trends, each chapter describes a particular aspect of the technology, giving scientists and engineers the necessary information, including physical principles and technical know-how, to design, apply, and troubleshoot these high-performance, low-cost components for diverse systems: TDM and WDM optical systems or microwave and millimeter-wave systems. The advantages and challenges still to overcome of InP-based semiconductors as compared with the more mature GaAs technology are also thoroughly reviewed. Presented in an easy-to-understand tutorial style, with topics cross-referenced between chapters, InP-Based Materials and Devices features more than 1,500 references as well as 365 figures and tables. Key topics include: * Basic materials physics involved in a wide range of InP-based compounds. * Growth of high-purity bulk and heterostructure epitaxy, including MOCVD, MBE, and GS-MBE. * Hetero-interface control and dry process techniques for device fabrication. * High-performance heterojunction-FETs and HEMTs as well as HBTs for high-speed IC and MMIC applications. * Lasers, amplifiers, and modulators as well as photodetectors and receivers for high-speed and WDM networks. * Optoelectronic integration and packaging for functional, low-cost modules.

Semiconductor Sensors provides complete coverage of all important aspects of all modern semiconductor sensing devices. It is the only book that offers detailed coverage of the fabrication, characterization, and operational principles of the entire spectrum of devices made from silicon and other semiconductors, and it is written by world-renowned experts in the sensor field. This authoritative guide combines user-friendly organization for quick reference with a masterful pedagogical design that helps build the reader’s understanding from section to section and from chapter to the next. It begins with a discussion of semiconductor sensor classification and terminology and moves on to a broad description of semiconductor technology, emphasizing bulk and surface micromachining. Senior undergraduate and first-year graduate students will appreciate the 300 illustrations and tables that help to clarify difficult points and encourage visualization of the devices under discussion. They will also benefit from the interdisciplinary nature of the presentation, which encompasses applied physics, chemical engineering, electrical and mechanical engineering, and materials science. For engineers and scientists involved in sensor research and development or in designing sensor-dependent devices and systems, Semiconductor Sensors is the ultimate one-stop source for the latest information on existing technologies.

This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those interested in silicon devices. Each chapter ends with exercises that have been designed to reinforce concepts, to complement arguments or derivations, and to emphasize the nature of approximations by critically evaluating realistic conditions. One of the most rigorous treatments of compound semiconductor device physics yet published! Essential reading for a complete understanding of modern devices! Includes chapter-ending exercises to facilitate understanding.