Boundary Value Problems In Complex Analysis I

Complex Arithmetic, Circular Arcs, and Boundary Value Problems

Hyberbolic Boundary Value Problems

Complex Analytic Methods for Partial Differential Equations

Boundary Value Problems for Linear and Quasilinear Complex Equations of Hyperbolic and Mixed Types

Complete Sets of Root Functions of Regular Differential Operators

The Complex Variable Boundary Element Method

Partial Differential Equations and Complex Analysis

Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift

Green's Functions and Boundary Value Problems

The book begins with a thorough introduction to complex analysis, which is then used to understand the properties of ordinary differential equations and their solutions. The latter are obtained in both series and integral representations. Integral transforms are introduced, providing an opportunity to complement complex analysis with techniques that flow from an algebraic approach. This moves naturally into a discussion of eigenvalue and boundary value problems. A thorough discussion of multidimensional boundary value problems then introduces the reader to the fundamental partial differential equations and "special functions" of mathematical physics. Moving to non-homogeneous boundary value problems the reader is presented with an analysis of Green's functions from both analytical and algebraic points of view. This leads to a concluding chapter on integral equations.

Hyperbolic Boundary Value Problems

Complex Analytic Methods for Partial Differential Equations

This book studies the foundations of the general theory of generalized analytic functions in fractional spaces. The employment of fractional spaces and embedding theorems support applications of the theory of generalized analytic functions. The results obtained are applicable to the theory of elliptic, parabolic, hyperbolic, and mixed-type equations and to systems of such equations, functions of a complex variable, as well as to the theory of plates and shells. The book will be of interest to scientific workers and specialists interested in these questions and likewise to advanced students in mechanical engineering faculties.

Boundary Value Problems

The first formulations of linear boundary value problems for analytic functions were due to Riemann (1857). In particular, such problems exhibit as boundary conditions relations among values of the unknown analytic functions which have to be evaluated at different points of the boundary. Singular integral equations with a shift are connected with such boundary value problems in a natural way. Subsequent to Riemann's work, D. Hilbert (1905), C. Haseman (1907) and F. Carlman (1932) also considered problems of this type. About 50 years ago, Soviet mathematicians began a systematic study of these topics. The first works were carried out in Tbilisi by D. Kveselava (1946-1948). Afterwards, this theory developed further in Tbilisi as well as in other Soviet scientific centers (Brestov on Don, Kazan, Minsk, Odessa, Kishinev, Dushanbe, Novosibirsk, Baku and others). Beginning in the 1960s, some works on this subject appeared systematically in other countries, e. g., China, Poland, Japan, Korea and others. In the last decade the geography of investigations on singular integral operators with shift expanded significantly to include such countries as the USA, Portugal and Mexico. It is no longer easy to enumerate the names of all the mathematicians who made contributions to this theory. Beginning in 1957, the author also took part in these developments. Up to the present, more than 600 publications on these topics have appeared.

Linear and Quasilinear Complex Equations of Hyperbolic and Mixed Types

Recent results on partial differential equations as well as with complex analytic methods on singular integral equations and on related subjects are presented. Many of the contributions are survey articles. Topics ranging from elliptic, parabolic, hyperbolic, and mixed-type equations and systems to hyper-complex and quaternionic analysis, analytic, bimorphic, polyharmonic and functions of several complex variables are covered. Applications to mathematical physics are also included. Audience: Specialists in partial differential equations and related topics, with an interest in real and complex methods and in applications to mathematical physics will find this book very useful.

Completeness of Root Functions of Regular Differential Operators

Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary value problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. Thus the book's improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators.

The Complex Variable Boundary Element Method

This is an introductory text for beginners who have a basic knowledge of complex analysis, functional analysis and partial differential equations. Riemann and Riemann-Hilbert boundary value problems are discussed for analytic functions, for (hyper-)complex Cauchy-Riemann systems as well as for generalized Beltrami systems. Related problems such as the Poinceau problem, pseudoparabolic systems and complex elliptic second order equations are also considered. Estimates for solutions to linear equations existence and uniqueness results are thus available for related nonlinear problems; the method is explained by constructing entire solutions to nonlinear Beltrami equations. Often problems are discussed just for the unit disc but more general domains, even of multiply connectivity, are involved.

Partial Differential Equations and Complex Analysis

The precise mathematical investigation of various natural phenomena is an old and difficult problem. This book is the first to deal systematically with the general non-selfadjoint problems in mechanics and physics. It deals mainly with bounded domains with smooth boundaries, but also considers elliptic boundary value problems in tube domains, i.e., in non-smooth domain. This volume will be of particular value to those working in differential equations, functional analysis, and equations of mathematical physics.

Green's Functions and Boundary Value Problems

Complex Analysis

Ever since the groundbreaking work of J.J. Kohn in the early 1960s, there has been a significant interaction between the theory of partial differential equations and the function theory of several complex variables. Partial Differential Equations and Complex Analysis has the background and the tools to achieve the depths of the subject. It explains the background of linear partial differential equations in the context of how they are applied to the study of complex analysis. The author treats the Dirichlet and Neumann problems for elliptic equations and the related Schauder regularity theory, and examines how those results apply to the boundary regularity of holomorphic mappings. He studies the θ-Neumann problem, then considers applications to the complex function theory of several variables and to the Bergman projection.
Elementary Boundary Value Problems

This book surveys some topics in the rapidly developing areas of regular and singular boundary value problems. It also provides a detailed account of the current state of the literature on existence theory for ordinary differential equations. Results are presented for finite and semi-infinite intervals. Singularities in both independent and dependent variables are discussed.

Boundary Value Problems for Analytic Functions

Partial Differential Equations and Boundary-value Problems with Applications

Numerical Continuation Methods for Dynamical Systems

Fundamentals of Differential Equations and Boundary Value Problems

Boundary Value Problems

This textbook elucidates the role of BVPs as models of physical phenomena, describes traditional methods of solution and summarizes the ideas that come from the solution techniques, centering on the concept of orthonormal sets of functions as generalizations of the trigonometric functions and sine and cosine functions. The book contains exercises that range in difficulty from routine applications of the material, emphasizing the unifying nature of the material; this book: constructs physical models for both bounded and unbounded domains using rectangular and other co-ordinate systems; develops methods of characteristics, eigenfunction expansions, and transform procedures using the traditional Fourier series, D'Alembert's method, and Fourier integral transforms; makes explicit connections with linear algebra, analysis, complex variables, set theory, and topology in response to the need to solve BVP's by employing Sturm-Liouville systems as the primary vehicle; and presents illustrative examples in science and engineering, such as versions of the wave, diffusion equations and Laplace's equations; providing fundamental definitions for students with no prior experience in this topic other than differential equations, this text is intended as a resource for upper-level undergraduates in mathematics, physics, and engineering, and students on courses on boundary value problems.

Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift

This reader-friendly book presents traditional material using a modern approach that invites the use of technology. Abundant exercises, examples, and graphics make it a comprehensive and visually appealing resource. Chapter topics include complex numbers and functions, analytic functions, complex integration, contour integrals, residues: applications and theory, conformal mapping, partial differential equations: methods and applications, transform methods, and partial differential equations in polar and spherical coordinates. For engineers and physicists in need of a quick reference tool.

Complex Variable Methods in Elasticity

Generalized Analytic Functions in Fractional Spaces

Boundary Value Problems in a Text material on partial differential equations that teaches solutions of boundary value problems. The book also aims to build up intuition about how the solution of a problem should behave. The text consists of seven chapters. Chapter 1 covers the important topics of Fourier Series and Integrals. The second chapter deals with the heat equation, introducing separation of variables. Material on boundary conditions and Sturm-Liouville systems is included here. Chapter 3 presents the wave equation; estimation of eigenvalues by the Rayleigh quotient is mentioned briefly. The potential equation is the topic of Chapter 4, which closes with a section on classification of partial differential equations. Chapter 5 briefly covers some other mathematical problems and special functions. The last two chapters, Laplace Transforms and Numerical Methods, are discussed in detail. The book is intended for third and fourth year physicists and engineering students.

Boundary Value Problems

The Complex Variable Boundary Element Method or CVBEM is a generalization of the Cauchy integral formula into a boundary integral equation method or BIEM. This generalization allows an immediate and extremely valuable transfer of the modeling techniques used in real variable boundary integral equation methods (or boundary element methods) to the CVBEM. Consequently, modeling techniques for dissimilar materials, anisotropic materials, and time advancement, can be directly applied without modification to the CVBEM. An extremely useful feature offered by the CVBEM is that the pro duced approximation functions are analytic within the domain enclosed by the problem boundary and, therefore, exactly satisfy the two-dimensional Laplace equation. The nature of the CVBEM is the integrations of the boundary integrals along each boundary element are solved exactly without the need for numerical integration. Additionally, the error analysis of the CVBEM approximation functions is workable by the easy-to-understand concept of relative error. A sophistication of the relative error analysis is the generation of an approximative boundary upon which the CVBEM approximation function exactly solves the boundary conditions of the boundary value problem (of the Laplace equation), and the goodness of approximation is easily seen as a closeness-of-fit between the approximative and true problem boundaries.

Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift

The Complex Variable Boundary Element Method or CVBEM is a generalization of the Cauchy integral formula into a boundary integral equation method or BIEM. This generalization allows an immediate and extremely valuable transfer of the modeling techniques used in real variable boundary integral equation methods (or boundary element methods) to the CVBEM. Consequently, modeling techniques for dissimilar materials, anisotropic materials, and time advancement, can be directly applied without modification to the CVBEM. An extremely useful feature offered by the CVBEM is that the pro duced approximation functions are analytic within the domain enclosed by the problem boundary and, therefore, exactly satisfy the two-dimensional Laplace equation. The nature of the CVBEM is the integrations of the boundary integrals along each boundary element are solved exactly without the need for numerical integration. Additionally, the error analysis of the CVBEM approximation functions is workable by the easy-to-understand concept of relative error. A sophistication of the relative error analysis is the generation of an approximative boundary upon which the CVBEM approximation function exactly solves the boundary conditions of the boundary value problem (of the Laplace equation), and the goodness of approximation is easily seen as a closeness-of-fit between the approximative and true problem boundaries.

Numerical Continuation Methods for Dynamical Systems

Boundary Value Problems

The Complex Variable Boundary Element Method or CVBEM is a generalization of the Cauchy integral formula into a boundary integral equation method or BIEM. This generalization allows an immediate and extremely valuable transfer of the modeling techniques used in real variable boundary integral equation methods (or boundary element methods) to the CVBEM. Consequently, modeling techniques for dissimilar materials, anisotropic materials, and time advancement, can be directly applied without modification to the CVBEM. An extremely useful feature offered by the CVBEM is that the pro duced approximation functions are analytic within the domain enclosed by the problem boundary and, therefore, exactly satisfy the two-dimensional Laplace equation. The nature of the CVBEM is the integrations of the boundary integrals along each boundary element are solved exactly without the need for numerical integration. Additionally, the error analysis of the CVBEM approximation functions is workable by the easy-to-understand concept of relative error. A sophistication of the relative error analysis is the generation of an approximative boundary upon which the CVBEM approximation function exactly solves the boundary conditions of the boundary value problem (of the Laplace equation), and the goodness of approximation is easily seen as a closeness-of-fit between the approximative and true problem boundaries.

Generalized Analytic Functions

Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday.
Boundary Value Problems in Complex Analysis I

This volume deals with first and second order complex equations of hyperbolic and mixed types. Various general boundary value problems for linear and quasilinear complex equations are investigated in detail. To obtain results for complex equations of mixed types, some discontinuous boundary value problems for elliptic complex equations are discussed.

Partial Differential and Integral Equations

As is well known, the first decades of this century were a period of elaboration of new methods in complex analysis. This elaboration had, in particular, one clear acteristic feature, consisting in the interfusion of some concepts and methods of harmonic analysis and partial differential equations. It is not to have great amount of material to be classified to a vast number of significant results, of which we want to mention especially the classical results on the theory of Fourier series in L2 (-π, π) and their continual analog - Plancherel's theorem on the Fourier transform in L2 (-∞, ∞). We want to note also two important Wiener and Paley theorems on parametric integral representations of a subclass of entire functions of exponential type in the Hardy space H2 over a half-plane. Being under the strong influence of these results, the author began in the fifties a series of investigations in the theory of integral representations of analytic and entire functions as well as in the theory of harmonic analysis in the cone plan domain. These investigations were based on the remarkable properties of the asymptotics of the entire function f (p, Ω > α), which was introduced in mathematical analysis by Mittag-Leffler for the case Ω = 1. In the process of investigation, the scope of some classical results was essentially enlarged, and the results themselves were evaluated.

Partial Differential Equations and Boundary Value Problems

Packed with examples, this book provides a smooth transition from elementary ordinary differential equations to more advanced concepts. Asmar's relaxed style and emphasis on applications make the material understandable even for readers with limited exposure to topics beyond calculus. Encourages the use of computer resources for illustrating results and applications, but is also suitable for use without computer access. Includes additional specialized topics that can be read as desired, and that can be read independently of each other. Numerous exercises requiring use of a computer with computer-graphics capability and generate numerical data that cannot be computed by hand. Offers Mathematica files for download from the author's Web site; can be accessed through the Prentice Hall address http://www.prenhall.com/pubguide/. For engineers or anyone looking to brush up on their advanced mathematics skills.

Boundary Value Problems of Mathematical Physics

Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis, you will be able to use this book to get involved in the current research on complex analysis.

Boundary Value Problems of Mathematical Physics

Partial Differential Equations with Fourier Series and Boundary Value Problems

A multi-interval quasi-differential system $S(\{f_{i}\},\{\omega_{i}\},\{\lambda_{i}\};\{\omega_{i}\})$ consists of a collection of real intervals, $S(\{f_{i}\};\{\omega_{i}\})$, as indexed by a finite, or possibly infinite index set $\{\omega_{i}\}$ where $\{\omega_{i}\}$ are ordered and generate an unbounded operators in the Hilbert function spaces $L^{2}(\{\omega_{i}\};\{\lambda_{i}\})$, where $L^{2}(\{\omega_{i}\};\{\lambda_{i}\})$ is the space of square-integrable functions on the interval $[0,1]$ with respect to the measure $d\lambda_{i}$. Let $S(\{f_{i}\};\{\omega_{i}\})$, $S(\{f_{i}\};\{\omega_{i}\};\{\lambda_{i}\})$, and $S(\{f_{i}\};\{\omega_{i}\};\{\lambda_{i}\};\{\mu_{i}\})$ be the corresponding extensions of $L^{2}(\{\omega_{i}\};\{\lambda_{i}\})$ to $L^{2}(\{\omega_{i}\};\{\lambda_{i}\};\{\mu_{i}\})$, respectively. The space $L^{2}(\{\omega_{i}\};\{\lambda_{i}\};\{\mu_{i}\})$ is the completion of $L^{2}(\{\omega_{i}\};\{\lambda_{i}\})$ with respect to the natural inner product $(f,g)_{L^{2}(\{\omega_{i}\};\{\lambda_{i}\};\{\mu_{i}\})}$.

An Introduction to Several Complex Variables and Partial Differential Equations

This volume deals with first and second order complex equations of hyperbolic and mixed types. Various general boundary value problems for linear and quasilinear complex equations are investigated in detail. To obtain results for complex equations of mixed types, some discontinuous boundary value problems for elliptic complex equations are discussed. Mixed complex equations are included in the quasilinear case, and the text considers both boundary value conditions in the general oblique derivative case and mixed complex boundary conditions. Complex analytical methods are used to investigate various problems as well. In particular, hyperbolic numbers and hyperbolic complex functions are introduced to handle hyperbolic complex equations. Researchers and graduate students in mathematical analysis will find this text indispensable.

Multi-Interval Linear Ordinary Boundary Value Problems and Complex Symplectic Algebra

Boundary Value Problems is the leading text on boundary value problems and Fourier series. The author, David Powers, (Clarkson) has written a thorough, theoretical overview of solving boundary value problems involving partial differential equations along with the reduction of such problems to ordinary differential equations. The text considers both boundary value conditions in the general oblique derivative case and mixed complex boundary conditions. Complex analytical methods are used to investigate various problems as well. In particular, hyperbolic numbers and hyperbolic complex functions are introduced to handle hyperbolic complex equations. Researchers and graduate students in mathematical analysis will find this text indispensable.

Boundary Value Problems

This volume deals with first and second order complex equations of hyperbolic and mixed types. Various general boundary value problems for linear and quasilinear complex equations are investigated in detail. To obtain results for complex equations of mixed types, some discontinuous boundary value problems for elliptic complex equations are discussed. Mixed complex equations are included in the quasilinear case, and the text considers both boundary value conditions in the general oblique derivative case and mixed complex boundary conditions. Complex analytical methods are used to investigate various problems as well. In particular, hyperbolic numbers and hyperbolic complex functions are introduced to handle hyperbolic complex equations. Researchers and graduate students in mathematical analysis will find this text indispensable.

Applied Complex Analysis with Partial Differential Equations

This text includes exercises requiring use of a computer with computer icons, asking readers to investigate problems using computer-generated graphics and to generate numerical data that cannot be computed by hand. Offers Mathematica files for download from the author's Web site; can be accessed through the Prentice Hall address http://www.prenhall.com/pubguide/. For engineers or anyone looking to brush up on their advanced mathematics skills.

Linear and Quasilinear Complex Equations of Hyperbolic and Mixed Types

Building on the basic techniques of separation of variables and Fourier series, this book presents the solution of boundary value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various coordinate systems—rectangular, cylindrical, and spherical. The role of the Laplace transform is discussed in detail. The boundary problems are treated in some detail, but the final section of the book is concerned with boundary value problems for elliptic systems of equations, derived from the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional
chapters include the numerical analysis of solutions and the method of Green’s functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 400 with answers), the book is suitable for an undergraduate course in partial differential equations.

Analytic Methods of Analysis and Differential Equations

This high-level treatment considers one-dimensional singular integral equations involving Cauchy principal values, covering Hölder condition, Hilbert and Riemann-Hilbert problems, Dirichlet problems, Inversion formulas for arcs, more. 1992 edition.

Boundary Value Problems for Elliptic Equations and Systems

In the present edition I have included “Supplements and Problems” located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by B. philosopher and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a “sufficiently large” function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple inequalities for arbitrary functions and of a priori estimates of the solutions of the problem without enlisting any special representations of these solutions.

A Course in Differential Equations with Boundary Value Problems

This textbook for a one- or two-semester course in basic theory as well as applications of differential equations includes chapters on eigenvalue problems and Sturm-Liouville equations, stability of autonomous systems, and existence and uniqueness theory. The third edition adds a section on vibrations, an expanded review of linear algebraic equations and matrices, and a new treatment of Taylor polynomials. The CD-ROM helps visualize concepts with applications drawn from engineering, physics, chemistry, and biology. Annotation copyrighted by Book News, Inc., Portland, OR

Functional Calculus of Pseudodifferential Boundary Problems

The Boundary Value Problems of Mathematical Physics

The Boundary Value Problems of the Mathematical Physics

The Boundary Value Problems of the Mathematical Physics

A Unified Approach to Boundary Value Problems

A novel approach to analysing initial-boundary value problems for integrable partial differential equations (PDEs) in two dimensions, based on ideas of the inverse scattering transform that the author introduced in 1997. This method is unique in also yielding novel integral representations for linear PDEs. Several new developments are addressed in the book, including a new transform method for linear evolution equations on the half-line and on the finite interval; analytical inversion of certain integrals such as the attenuated Radon transform and the Dirichlet-to-Neumann map for a moving boundary; integral representations for linear boundary value problems; analytical and numerical methods for elliptic PDEs in a convex polygon; and integrable nonlinear PDEs. An appendix provides a list of problems on which the author’s new approach has been used, offers open problems, and gives a glimpse into how the method might be applied to problems in three dimensions.

Mathematics for the Physical Sciences

For more than 30 years, this two-volume set has helped prepare graduate students to use partial differential equations and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Originally published in 1957, this graduate-level introduction is devoted to the mathematics needed for the modern approach to boundary value problems using Green’s functions and eigenvalue expansions. Now a part of SIAM’s Classics series, these volumes contain a large number of concrete, interesting examples of boundary value problems for partial differential equations that cover a variety of applications that are still relevant today. For example, there is substantial treatment of the Maxwell equation and scattering theory; subjects that play a central role in contemporary inverse problems in acoustics and electromagnetic theory.

The Boundary Value Problems of Mathematical Physics

Continuum Mechanics and Related Problems of Analysis

Boundary value problems are of central importance and interest not only to mathematicians but also to physicists and engineers who need to solve differential equations which govern the behaviour of physical systems. In this book, Professor Sakamoto introduces the general theory of the existence and uniqueness of solutions to the wave equation. The reader is assumed to have some familiarity with Lebesgue integration and complex function theory but other than that the book is essentially self-contained. It is therefore suited to senior undergraduates and graduates in mathematics and the mathematical sciences but can be read with profit by professionals in these subjects.

Singular Integral Equations

This monograph mainly deals with several boundary value problems for linear and nonlinear elliptic equations and systems by using function theoretic methods. The established theory is systematic, the considered equations and systems, boundary conditions and domains are rather general. Various methods are used. As an application, the existence of nonlinear quasiconformal mappings onto canonical domains is proved.

Copyright code : a5095e46e247e32e6b98c1d31e7b